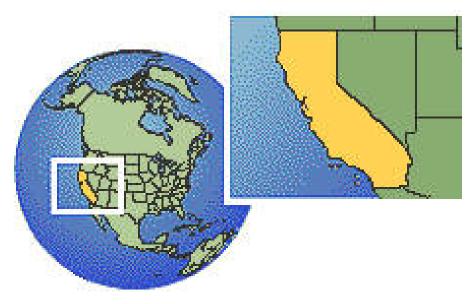


Common Core State Standards

Mt. Diablo Unified School District
Board Presentation
February 25, 2013

BACKGROUND


➤ The Common Core State Standards (CCSS) initiative was spearheaded by two national organizations as part of a broad education reform effort in our nation:

Council of Chief State School Officers (CCSSO)
National Governors Association (NGA)

- ➤ The mission of the CCSS is to provide consistent, clear understanding of what students are expected to learn
- Standards are designed to be robust and relevant to the real world to prepare our young people for success in college and careers
- ➤ The California State Board of Education adopted the CCSS in August 2010

Common Core State Standards

 Internationally benchmarked to ensure students will be globally competitive

- Fundamental knowledge for College and Career Readiness
- Shared, rigorous academic content with clear expectations for students
- Consistent across states (allows for collaboration)
 (Approximately 3,391,553
 teachers in the 48 states linked to the Standards.)

COMMON CORE STATE STANDARDS

DOCUMENTS

COMMON CORE STATE STANDARDS FOR

Mathematics

Appendix A: Designing High School Courses based on the Common Core State Standards

College and Career Readiness Standards

Appendix A: Research Supporting Key Elements

Appendix B: Text Exemplars and Sample

Performance Tasks

Appendix C: Samples of Student Writing

Available at http://www.cde.ca.gov/ci/cc/

COMMON CORE STATE STANDARDS

The Standards DO	The <i>Standards</i> DO NOT
define what all students are expected to know and be able to do	define <u>how</u> teachers should teach
focus on what is most essential	describe all that <u>can</u> or <u>should</u> be taught
establish a baseline for advanced learners	define the <u>nature of</u> advanced work

HEART AND SOUL OF COMMON CORE STANDARDS

Mathematics	Standards for Mathematical Practice
English Language Arts	College and Career Readiness Standards

English Language Arts Overall Document Organization

- The Standards comprise three main sections:
 - I. Grades K–5 (Reading, Writing, Speaking and Listening, and Language)
 - II. Grades 6–12 ELA (Reading, Writing, Speaking and Listening, and Language)
 - III. Grades 6–12 History/Social Studies, Science, and Technical (Reading and Writing.)
- Each strand is headed by a strand-specific set of College and Career Readiness Anchor Standards that is identical across all grades and content areas.
- Three appendices accompany the main document

Common Core Shifts for ELA/Literacy

- Literacy Standards for Content Areas
- 2. Increased Emphasis on Informational Text
- 3. Text Complexity
- 4. Writing Arguments
- 5. Focus on Collaborative Conversations
- Integration of Media Sources

MATHEMATICS OVERALL DOCUMENT ORGANIZATION

 Mathematics Content Standards for kindergarten through grade eight are organized by domain.

Counting & Cardinality(K) Ratios & Proportional Relationships(6-7)

Operations & Algebraic Thinking(K-5) Number System(6-8)

Number & Operations in Base Ten (K-5) Expressions & Equations (6-8)

Number & Operations-Fractions(3-5); Statistics & Probability(6-8)

Measurement & Data(K-5) Functions (8)

Geometry(K-8)

- * 8 Standards for Mathematical Practice that describe a set of skills of mathematics across K-12.
- Appendix A high school courses based on the Common Core State Standards – Traditional or Integrated Pathway.

(Conceptual Categories: Number & Quantity; Algebra; Functions; Modeling; Geometry; Statistics & Probability)

8 STANDARDS OF MATHEMATICAL PRACTICES

(OVERARCHING HABITS)
PERSERVERANCE & PRECISION

REASONING AND EXPLAINING

MODELING AND USING TOOLS

SEEING STRUCTURE AND GENERALIZING

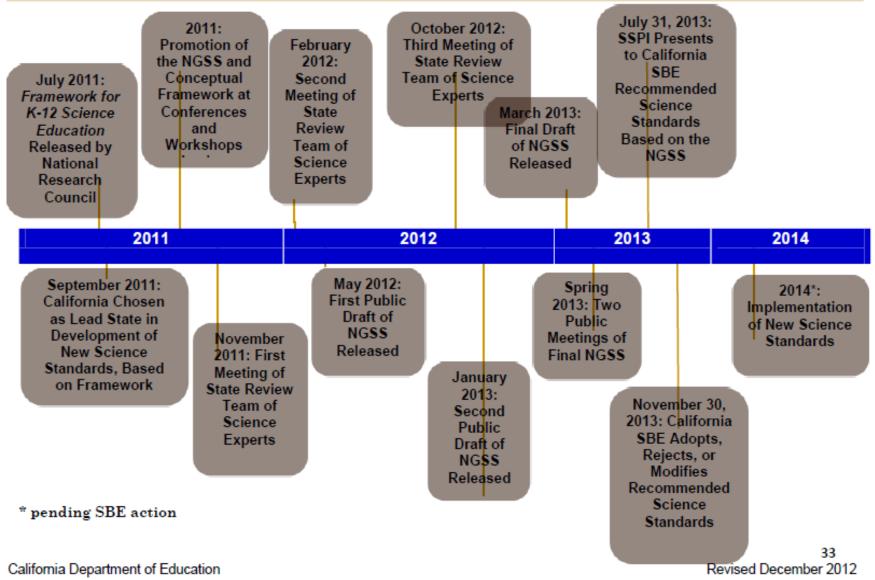
Common Core Shifts for Mathematics

- 1. Focus deeply on concepts prioritized in CCSS
- Coherence within and across grades
- 3. Fluency with calculations speed & accuracy
- 4. Deep Understanding of math concepts
- 5. Application of appropriate concept
- 6. Dual Intensity between practice and understanding

Technology and the Common Core

- Technology is no longer a stand-alone subject
- Supports core subjects
- Skills taught as an integration into classroom inquiry.
- Emphasis on publishing and sharing.
- Share work with all students and parents
- Use of tools like blogs, wikis, podcast, video websites and more.

TECHNOLOGY FOCUS WITHIN COMMON CORE



Students Should be able to:

- Produce and Publish Documents
- Interact and Collaborate
- Communicate Using Web Tools
- Evaluate Information Presented in Different Media Formats

NGSS Development Timeline

Next Generation Science Standards Development Process

SHIFTS IN THE TEACHING AND LEARNING OF SCIENCE

- oFewer, clearer, higher
- Increasing depth/sophistication across years
- Performance expectations
- Correlated to Common Core
 ELA & Math standards

Lots of work completed, underway, and left to do

California's Next Steps

SBE Adoption of NGSS

State Framework
Development

Instruction and Assessment

Professional Development

New Assessments

SMARTER BALANCED ASSESSMENT CONSORTIUM (SBAC)

- Single end-of-year summative assessment; includes performance tasks (grades 3-8, and 11)
 - Computer-adaptive
 - Paper & pencil available for the first three years
- Optional interim assessment tools to be used for diagnostic purposes throughout the school year
- Optional Formative resources (best practices, instructional resources

To "go live" in 2014 -15!

43010

The following is a rough draft of a paragraph that a student is writing for the school newspaper about why there should be a longer school day. The draft needs more details to support the student's reasons for having a longer school day.

GRADE4

Why There Should Be a Longer School Day

Schools should have a longer school day for students. First, students could learn more about different subjects if the school day were longer. Also, students could get extra help from teachers. More hours in class each day would also mean more vacations scattered throughout the year!

Now look at the following daily schedule for a school that has switched to a longer school day.

Morning Announcements
Reading Language Arts
Foreign Language
Morning Recess
Mathematics
Lunch
History
Art or Music
Afternoon Recess
Science
Homework Preparation
After-School Tutoring or Sports

Revise the paragraph by adding details from the daily schedule that help support the reasons for having a longer school day.

GRADE 6

What does the author mean by "the sky is no longer the limit"? How does the meaning apply to the Anyadike sisters? Use details from the text to support your response.

HIGH SCHOOL

43008

Read this sentence from the passage.

"Besides being beautiful to contemplate, space diamonds teach us important lessons about natural processes going on in the universe, and suggest new ways that diamonds can be created here on Earth."

Explain how information learned from space diamonds can help scientists make diamonds on Earth. Use evidence from the passage to support your answer.

Type your answer in the space provided.

43023

GRADE4

A rectangle is 6 feet long and has a perimeter of $20\frac{1}{2}$ feet.

What is width of this rectangle? Explain how you solved this problem.

43053

Look at each expression. Is it equivalent to $\frac{x+3y}{2}$?

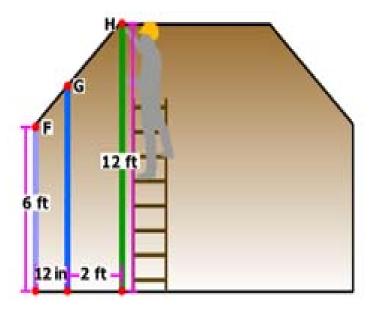
Select Yes or No for expressions A -

GRADE7

A.
$$\frac{4x + 3y}{8}$$

B.
$$\frac{5}{4} \left(\frac{2x+6}{5} \right)$$

c.
$$\frac{1}{2}(x + 3y)$$


D.
$$\frac{2}{3} \left(\frac{5x}{6} + \frac{9y}{4} - \frac{x}{12} \right)$$
 OYes

HIGH SCHOOL

43057

A construction worker is using wooden beams to reinforce the back wall of a room.

Determine the height, in feet, of the beam that ends at point G. Explain how you found your answer.

TAKE NOTE: WHO WILL BE THE FIRST TO TAKE NEW ASSESSMENTS OF COMMON CORE

Grade in Fall 2012	Grade in 2014-15
1	3rd
2	4 th
3	5 th
4	6 th
5	7 th
6	8 th
7	9 th
8	10 th
9	11 th

MDUSD Transition To Common Core (CCSS)

Phase 1 – Awareness/Dissemination (2011-2013)

- Common Core Overview presented to all teachers and administrators
- Identification of strategies/practices aligned to CCSS Pilot CCSS lessons
- Technology integration training

Phase 2 – Transition (2013-2014)

- Alignment of textbooks, courses, pacing guides, elementary report card to CCSS
- Assessments alignment to CCSS
- Continuation of integration of strategies/practices/lessons to CCSS
- Continuation of technology integration training
- Development of teaching materials/resources

Phase 3 – Implementation (2014-2015)

- Full implementation of CCSS instruction, curriculum and assessments
- Continuation of development of lessons, units of study, formative assessments
- Continuation of alignment of textbooks, courses, pacing guides, elementary report card
- Continuation of technology integration within classroom instruction
- SBAC assessments for grades 3-8 and 11

RESOURCES TO SUPPORT IMPLEMENTATION OF CCSS

<u>www.mdusd.org/Departments/sass/commoncore/Pages/default.aspx</u>

SUPPORTING ALL STUDENTS TO BE COLLEGE AND CAREER READY

CO/NA/NA DEN COEREE state standards

5 steps you can take this year to prepare your students for the transition:

Teach Academic Vocabulary

Domain Specific

hyperbole parabola

mitosis sculpture

factor

stimulus stanza General

deduce
analyze
predict
inference
contrast
identify
evaluate

USE TECHNOLOGY

to connect, collaborate, research, explore, synthesize, and present information

INCREASE EXPOSITORY WRITING

Write in Math.

Write in Science. Write in Social Studies.

Write in Art.

Write across all content areas!

ASK OPEN ENDED

QUESTRONS

- Why do you think that?
- How do you know?
- Can you prove it?What would happen if...

solve it?

What is another way to