MT. DIABLO UNIFIED SCHOOL DISTRICT COURSE OF STUDY

COURSE TITLE:Pre-Calculus
COURSE NUMBER: 1390
CBEDS NUMBER: 2414
DEPARTMENT: Mathematics
LENGTH OF COURSE: One Year
CREDITS PER SEMESTER: 5
GRADE LEVEL(S): 10-12
REQUIRED OR ELECTIVE: This course fulfills one year of the highschool mathematics requirement andUC/CSU "c" requirement.
PREREQUISITES: Required - C or better Algebra II or Algebra II/Trig and/or Teacher Recommendation
BOARD OF EDUCATION ADOPTION: June 22, 2010

GOURSE DESCRIPTION:

This course is designed to develop-students' eritieal thinking in the analysis of funetions-and function modeling. Students will review and expand advanced algebra topies and apply problem solving techniques using graphical, numerical, and analytical methods. Students will be able to aceufately model various seenarios using an appropriate model and will develop their skills in choosing and justifying a model, as well as verifying results, using mathematical properties and reat-world context. Students will leave this course with the skills and abilities to connect mathematics to the world around them and be-successfulin higher level mathematics eourses.

GOURSE PURPOSE:

Students will be able to apply the tools for mathematieal modeling to linear, quadratic, polynomial and rational functions.
Students will be able to identify, construet, and analyze the relationship among various trigonometric functions and their graphs.
Students will be able to identify, construct, and analyze the relationship of conies, expenential functions, and logarithmic functions.
Students will be-able to identify, analyze-and construet models-of finite-and-diseontinueus quantities such as functions, logie, sequences, algorithms, matrices, and induetions.

COURSE OVERVIEW

Pre-Calculus focuses on the study of families of functions, their application in mathematical modeling, and the use of equivalence to rewrite expressions to reveal important features. Students analyze features of a variety of functions and their graphs, connect different representations, and identify and apply transformations of equations and graphs. To solve problems using function models, students choose among function families, fit linear and nonlinear functions to data, and interpret, apply, and evaluate the resulting models. The study of functions in this course includes strengthening of concepts and skills from prior courses, fuller development of equivalent forms of functions, and an in-depth study of trigonometry and its applications.

In addition to the California Common Core State Standards for Mathematics, students will experience and gain fluency with the 8 Standards for Mathematical Practice:

1. Make sense of problems and persevere in solving them
2. Reason abstractly and quantitatively
3. Construct viable arguments and critique the reasoning of others
4. Model with mathematics
5. Use appropriate tools strategically
6. Attend to precision
7. Look for and make use of structure
8. Look for and express regularity in repeated reasoning

Overall, the quality of a learning environment depends on the extent to which it provides opportunities for students along the following five dimensions:

1. The richness of disciplinary concepts and practices ("the content") available for learning;
2. Student sense-making and "productive struggle";
3. Meaningful and equitable access to concepts and practices for all students;
4. Means for constructing positive disciplinary identities through presenting, discussion and refining ideas; and
5. The responsiveness of the environment to student thinking.

Unit 1 Relations, Functions and Graphs

Goals:

Student will be able to:
Analyze graphs of functions
Solve equations and systems of equations using multiple methods
telentify and analyze families of functions
Solve problems using equation models
Find exact and approximate zeros and roots of functions and equations

Iopics:

Determine whether agiven relation is a function and perform operations with functionsEvaluate and find zeros of linear functions using functional notation Graph and write functions and inequalities

Write equations of parallet and perpendieular lines
Modeldata using seatter plots and write predictions equations
Define add, subtract and multiply matrices
Graph funetions, relations, inverses, and inequalities
Analyze families of graphs
Thvestigate-symmetry, continuity, end behavior, and transformations of graphs- Find asymptotes and extrema of functions
Solve problems involving direct, inverse, and jeint variation
Determine roots of polynomial-quations
Solve quadratic, rational, and radiealequations and rational-and radieal inequalitiesFind the factors of polynemials
Approximate real zeros of polynemial functions
Write and interpret polynomial functions that model reat-world data

Students will apply prior knowledge of linear and quadratic functions to the analysis of those functions and graphs, as well as extending these concepts to more complex polynomial and rational functions in order to identify zoros, roots, maxima, minima, points of inflection, end behavior, andsymmetry. Students will analyze graphs and functions, identifying their parent function, as well as apply transformations.

Students will take reat-world data and create matrices using matrix operations to assess ehanges in their data and analyze the results, focusing on metacognitive practices and innovative thinking. Unit 1 focuses on-developing student perseverance in problem-solving and developing student expertise in mathematical modeling. An additional foeus of this beginning unit is to encourage wonderment and awe of advanced mathematies.

Unit 2 Trigonometry

Goats:

Students will be-able to:
Find missing angles, side lengths, and area-of triangles
Graph trigonometric functions
Derive a unit eirele based on-special triangles
Verify trigonometrie identities andsolve trigonometrie equations

Fopies:

Gonvert decimal degree measures to degrees, minutes, and seconds and viee versaSolve triangles
Find the values of trigonometrie functions
Find the area of triangles
Ehange from radian measure to degree measure, and vice versa
Find linear and angular velocity
Use and draw graphs-of trigonemetric functions and their inverses
Find the amplitude, the period, the phase shift, and the verticalshift for trigenemetric functions
Write trigonometrie equations to model a given-situation
Use reciproeal, quetient, Pythagorean, symmetry, and-opposite-angle-identities-

Verify trigonometric identities
Use-sum, difference, double angle, and half angle identitios
Solve trigonometric equations and inequalities
This unit begins with review of right angle trigonometry. Students will aequire knowledge of the basic sine, cosine, tangent ratios and functions and apply this to the solving of right triangles. Students will investigate given-situations to determine appropriate use of trigonometrie tools such as basic and inverse trigonometric functions and the Law of Sines and Law of Gosines.

Students derive the unit eirele using radians and special triangles. The aequisition of these skills-will-enable-students to define and graph the three foundational trigonometrie funetions sine, cosine, and tangent as well as the reciprocal functions cosecant, secant, and cotangent. Students will transform these functions, demonstrating how a change in parameter affeets the period, amplitude and phase of the function.

Students willderive identities ineluding the Pythagorean identities, sum and differenee, double and half angles. Students will develop and enhanee their logieal thinking-skills by verifying complex identities through simple, basic identities as well as solving trigonemetric equations. By the end of the unit, students will have developed a conceptual understanding of the basie trigonometric functions, their inverses and reciprocals, and be able to use them in real world modeling. Unit 2 fous on developing-student expertise in mathematieal modeling, using appropriate tools strategically, and attending to precision.

Unit 3 Advaneed Funetions and Graphing

Goals:

Students will be able to
Identify and graph conic sections using standard and general forms of equations. Simplify, evaluate, and graph expenential and logarithmic expressions, equations, and functions

Fopics:

Use analytic methods to prove geometric relationships
Use and determine the standard and generalforms of the equation for conic sectionsFind equations, analyze and sketch the graphs of circles, parabolas, ellipses and hyperbelas.
Simplifying and evaluating expressions containing rationalandifrationalexponents. Use and graph exponential functions and inequalities
Evaluate expressions and graph and solve equations involving logarithms. Modet real-world-situations and-solve problems using common and naturallogarithms.

Unit 3 -starts with an overview plane geometry. Students will decontextualize and find parametric equations frem real-world applications. They will analyze parametric equations to determine the conic section theycorrespond to and graph the equations. They will be able to form parametrie equation given eharacteristio of the graph.

Students will refine and broaden their comprehension of exponential and logarithmic functions from algebra II starting with reviewing simplification and evaluation of rational and irfational exponents. They will look to reat-world situations and model them using tables and graphs in order to make predictions. They will analyze and decontextualize expressions, equations and
graphs from the broad range of real-world-scenarios.
Unit 3 focuse on developing student's expertise in: making sense of problems and preserving in-solving them, modeling with mathematies, attending to precision, and using appropriate tools-strategically.

Unit 4 Discrete Mathematics

Goals:

Students will be able to:
Analyze limits, sums, convergence, and divergence-ofsequenees and-series-
Solve problems involving combinations and permutations
Find probabilities of reat worldsconarios
Bisplay, interpret and analyze data

Fopies:

Find specified term(s) of arithmetic, geometric and infinite-sequences. Find
sums of arithmetic, geometric, and infinite-series.
Determine whether aseries is convergent or divergent.
Use-sigma notations
Use the Binemial Theorem to expand binemiats
Solving problems involving combinations and permutations
Distinguish between independent and dependent events and between mutually exelusive and
mutually inelusive vents.
Find probabilitios
Find odds for the suceess and failure of an event.
Ahake anduse bar graphs, histograms, frequency distribution tables, stem-and-leaf plets and box-and-whisker plots.
Find the measures of central tendency and the measures of variability
Hoe the normaldistribution curve.

Unit 4 begins with the review of arithmetic and geometric sequences. Students have to derive a formula written in summation notation for a geometric or arithmetic sequenees from a repeated pattern and determine whether it's limit is divergent or convergent. They use binomial theorem to expand binomials and to find a-specifie termin it's expansion.

Students will enhance their skills in these sections with the experience of using realia and data such as dice, deck of cards, and statisticat recordings to represent combinations and probability. Students will analyze real-world data and-seenarios to determine what appropriate methods will be applied to combination and permutation problems. Students will inerease their ability to differentiate between independent events, mutually exelusive events and comploments.

Students will understand how graphs represent data and how to interpret the graphs. Student will be able to analyze the data and choose the appropriate graph or model. Students will learn about Normal-distributions and central measures of tendency and be able to use this model to approximate a binomial distribution. Students will analyze data and seenarios to determine what
appropriate methods will be applied in both-solving and graphing. They will increase their skills in measures of central tendeney and apply them to the normaldistribution curve. Unit 4 focuses on developing student's expertise in: modeling with mathematics, making sense of problems and persevere in solving them, looking for and expressing regularity in repeated reasoning and using appropriate tools strategically.

KEY ASSIGNMENTS:

Students will be assigne homewerexereises from the tex that supports the daily lessons. Reading, written analysis and in depth problems will be assigned appropriately throughout the eourse to support abstract and quantitative reasoning. Students will apply their knowledge of mathematicat analysis to various reat world secharios

Unit 1: Relations, Functions and Graphs

Fransformation Exploration: Students will explere functions and their corresponding grapho. They will be given various functions within a family of functions and compare the graphs of these functions using caleulaters andlor computerseftware. Based on these functions, students will make conjectures relating these functions and the transformations of the graphs. Students will support their conjectures graphically, algebraically, and numerieally. In collaborative groups, students will compare and contrast their discoveries with other students, critique the reasoning of others through a peer-review process, and reach a generalcondusion about transformations.

Unit 2: Trigonometry

Unit Gircle: Students will work fogether collaboratively to make a unit circle. Students will incorporate prior knowledge of right triangle trigonometry to find the sine, cosine and tangent from the coordinates on the unit circle. Students will use this analysis to graph the sine, eosine and tangent functions. Students will make connections of these functions with real-world applications and present to the class, providing their analysis and mathematicat reasoning with their function models.

Unit 3 Advanced Functions and Graphing Alodeling Medieine: Students will-start this unit by studying the growth of eaneerous tumor eells. Students willuse scientific data to write models for tumor growth. They will use graphs and algorithms in data to study what happens when various treatments are used on tumors and use the results to evaluate the effectiveness of the treatments. Students will- determine how functions can be used to determine which tumors are more dangerous by analyzing math models. At the and of the unit students will be assessed through their abilities to analyze a combination of graphs, funetions, and data sets for a tumor's growth from diagnosis to after treatment to evaluate how destructive the tumor is and if the treatment is having any effect. Students will present their findings with the elass and provide their mathematieal reasoning and justification for their conclusions.

Unit 4 Discrete Mathematies

Bata Survey: Students will work alone or in groups to describe variability in data. Students will ereate a survey and collect an original data-set of values with precision at the interval-or ratio levelof measurements which provides the following information: small values, printed computer result of descriptive statistics and graphs, a written description of the purpose of the data, the
method used to gather the data and with important characteristies, pattern recognitions, deviations from patterns, distinguishing of quantitative and categorical data, and use of appropriate models. In the reflection and critiques of their conclusions, students will-share their results to the class in an oral presentation and group diseussion. Students will show mastery through their final analysis and summarizing their data. Students will become familiar with the complete data analysis process from datacollection to interpretation of data, as well as improve their ability to think and work interdependently. COURSE CONTENT:

Unit 1: Algebraic Structure, Polynomials, and Rational Expressions
A unit focused on "Algebraic Restructuring" reviews skills such as completing the square and factoring, and applies them to a variety of purposes such as the Rational Root Theorem, analyzing conic sections, and advanced solving techniques for equations involving exponential, logarithmic, and trigonometric functions.

Students will be able:

- Define and divide polynomials
- Determine the maximum number of zeros of a polynomial
- Find all rational zeros of a polynomial function
- Factor a polynomial completely
- Recognize and describe the graphs of various polynomial functions
- Identify the properties of general polynomial functions

At the end of the unit, students may develop a hypothetical business plan. They will complete a real planning template and will write a reflection of their work for each section. With this project, students will learn how math can be applied to financial planning in a real world application.

Unit 2: Sequences and Series

This unit addresses sequences in general, but places particular emphasis on arithmetic and geometric sequences which are expressed using sequence notation and vocabulary but examined in close connection with what students already know about linear and exponential functions. Series are also explored, including notation, vocabulary, the concept of convergence/divergence for infinite series, computation methods, and applications.

Students will be able:

- Interpret notation for sums/series
- Find the sum for an arithmetic series

At the end of the unit, students may complete the end of the unit assessment that includes interpreting notation for sums/series and connecting approaches to visualization of the arithmetic series sum formula.

Unit 3: Solutions of Equations, Inequalities, and Systems
The general solving concepts and skills emphasized in this unit include the meaning of solutions (equations, inequalities, systems), the relationship between analytic and graphical solutions, solving by undoing, and rewriting using equivalence (to assist in solving analytically). Specific solving techniques and considerations are emphasized during units focused on (1) exponentials and logs and (2) trigonometry. There are various possibilities in terms of learning progressions.

Students will be able:

- Solve simple trig equations
- Solve more complex trig equations involving algebraic equivalence such as factoring and

trigonometric equivalence

At the end of the unit, students may use a self assessment learning goal to solve a variety of equations which includes solving simple exponential and trigonometric equations, solve systems of 1 linear and 1 quadratic equations, and solve polynomial equations by applying the rational root theorem.

Unit 4 Functions and Function Families

The functions topics emphasized in this course are multiple representations (tables, graphs, equations, verbal), features of functions, function composition and decomposition, inverses, and transformations of functions. The major families studied are polynomial (including linear and quadratic), exponential, logarithmic, sinusoidal, and tangent functions, although other families are also included (e.g. linear absolute value, radical, rational, other trig functions). Due to the central role of multiple representations, function features, and transformations for this course overall, all versions of the course revisit these topics in multiple units throughout the year, in continuation of the focus on families of functions.

Students will be able:

- Apply transformations to families of functions (graph \leftrightarrow equations)
- Apply and compare multiple representations of functions, including equations in different forms
- Given the features of a function, sketch a graph

At the end of the unit, students will continue to work on their business plan and create corresponding graphs of their financial plan in order to pitch their business to the class. Students will generate a final reflection of their process, including areas for revision.

Unit 5: Modeling

The modeling skills identifies for this course are:

- Define quantities of interest when modeling
- Describe the features of function families and choose among function families for modeling purposes (FOCUS: exponential, quadratic, simple radical, simple rational, sinusoidal, piecewise-defined)
- Apply and compare multiple representations of functions in modeling contexts
- Apply right triangle trigonometry, Law of Sines, and Law of Cosines to solve triangles
- Evaluate models

Students will be able to:

- Define quantities of interest when modeling
- Choose among function families for modeling purposes
- Apply and compare multiple representations of functions in modeling contexts
- Evaluate models

At the end of the unit, students may work on a modeling task from Desmos.org. Students will be asked to generate questions based on the image of a charging cell phone. Students will be asked to make a scatterplot, choose a function family, write a model equation, and then predict how charged the phone will be at a given time.

Unit 6: Statistics and Probability

In this unit the required topics are finding equations for nonlinear trendlines, and interpretation of linear and nonlinear trendlines. Optional topics include trendline related topics such as residuals
and correlation analysis, probability topics, and inference-related topics such as simulations, statistical significance in experiments, and margin of error. The required skills can be incorporated in different ways.

Students will be able to find equations for nonlinear trendlines. Students will be able to:

- Choose among function families for modeling purposes
- Apply multiple representations of functions in modeling contexts
- Evaluate models

At the end of the unit, students may complete the end of the unit assessment that includes students deriving equations for nonlinear trendlines, choose among function families for modeling purposes, apply multiple representations of functions in modeling contexts, and evaluate models.

INSTRUCTIONS METHODS andlor STRATEGIES:

Feachers will use multiple modalities and instruetional methods to meet the learning needs of ouf diverse student population with a focus on integrating the eight mathematical practices and the sixteen habits of mind for $21^{\text {st }}$ eentury learning.

Reading assignments, direct instruction and class diseussions are used to introduce students to new coneepts and terminology, show example problems and explain methods and reasoning. Reading assignments often are abstract, so the-students are required to take that information and put it into context for the class. This leads to class discussion where they will make arguments and critique the arguments of othors. The reading assignments also holp themlook for and make use of strueture-and patterns. In adelition, class discussions may be inquiny based, which will promote critical thinking skills, challenge students' thinking, and increase their Histening skills with understanding and pereeption of another's point of view.

Example problems in class will help metivate the-students with real world problems and connect the -students to their interests. It also will help them-see the patterns in problems when they work on the homework which will reinforee their skills and provide more unique real world problems. These problems are also of a higher level requiring porseverance and precision. Homowerk is used to reinforee the coneepts and knowledge in the daily lessons. Homework will also assist students in attending to precision, developing pattern recognition, and practicing making use of structure.

The smallgroup work and technology applications provide the students the noed to determine the appropriate tools, be able to model the complex real-situation with a simpler model, and increase their ability to think interdependently as teams.

During introduction to new concepts emphasis is placed on perseverance, making sense of problems, precision, striving for accuracy, and making use of structure.

Explorations will allow students to examine conjectures, test and analyze hypotheses, reflect on results, test struetures, and deconstruct patterns. Explorations are also focusedon encouraging creativity, imagination, and innovation in students.

Onee students have the foundation, then-smallegroup work, technology and projects are used to provide hands-on-experience and inerease the students' ability to apply their knowledge and improve their critical thinking skills. Emphasis is placed on reasoning abstractly and
quantitatively, constructing viable arguments and critiquing the reasoning of others, using appropriate tools and mathematical modeling, questioning, and problem posing.

Problem-Solving scenarios will be assigned and routinely analyze and interpret data to explore and deepen their understanding of mathematicalconeepts. An additional focus will be-on creating-seenarios that inerease-students' intrigue and interest in the world around them.

Real-life modeling will be used to describe a situation and interpret the results in the context of the problem and will encourage-students to remain life-long learners.

COURSE MATERIALS

Authors	Edition	Publisher	Title	Website
Gordon-Holliday/Ho Iliday et al.	2006	Glencoe	Advanced Mathematical Concepts: Pre-Calculus with Applications	

Teacher support resources can also be found in the Educational Services Website and supplemental online curriculum (for ex. Apex).

ASSESSMENTS INCLUDNG METHODS andfor TOOLS

The assessments are in the form of quizzes, tests, and projects. There are basic quizzes-and portion of tests that are in multiple-choice format, which target basic knowledge of terms and ealeulations. Aultiple-ehriee questions will inelude multiple correet or applieation coneepts that foster higher thinking skills. The tests also include shert constructed response portions which require the students to formulate a hypothesis and draw conelusions as well as use the appropriate-skills to solve the problem.

Projects require the students to design and ereate their own study and apply coneepts learned throughout the year. They will also be required to communieate the findings of their projeet with the class, as well as critique the projects of other students.

Some of the formative assessments make sure that the students ean identify different structures and recognize key coneepts as well as collect and display data. Some of the bigger quizzes require that they compare concepts or differentiate between-situations, as well as apply these coneepts to different-situations.

The tests, group seenarios, and projects require the students to analyze a given situation and apply the coneepts to prove the hypothesis true. They may also need to create a sittuation where they would need to use a speeific inferential tool. The projects provide time for the students to work collaboratively, present an argument and eritique the logic of others. The projects are designed to conneet the coneepts learned throughout the chapter or book, as well as their metacognition-skills and flexibility in thinking. EVALUATION OF STUDENT PROGRESS:
Assessment Methods:

- Summative assessment
- Formative Assessment

Formative:

- Mathematical Discourse
- Reflection questions
- Teacher observations/evidence
- Student discussions
- Quiz
- Exit ticket

Summative:

- Performance task
- Unit Assessment

Gommittec Members:

4. Dan Leingang Teacher Gollege Park H
z. Michelle HIgby Teacher Concord HS
5. Wendy Rounds Teacher Northgate Hs
6. Luis MiguelSoto Teacher Olympie HS
7. Navpreet Padd Teacher Ygnacio Vallly Hs
8. Hellena-Postrk SchoolSupport Administrator SASS

College Park	Joan Dahl, Teacher
Concord	Maxwell Cazanov, Teacher
Concord	Norma Meyerkorth, Teacher
Mt. Diablo	Kyle Kondo, Teacher
Mt. Diablo	Lisa Scranton, Teacher
Northgate	Gregory Lyons, Teacher
Ygnacio Valley	David Swenson, Teacher
Ygnacio Valley	Erica Huie, Teacher
Dent Center	Susan Hartwig, Curriculum Specialist
Willow Creek Center	Jodi Masongsong, TOSA
	Jeanne Johnson, TOSA
	Angela Victor, TOSA

